

DBW-003-2042001

Seat No. _____

B. Sc. I.T. (Sem. II) Examination July - 2022

CS-07(2019): Data Structure Using C Language

Faculty Code: 003 Subject Code: 2042001

Time : $2\frac{1}{2}$ Hours] [Total Marks: 70 1 (a) Write answers for following questions. 4 Explain free() function. (1) **(2)** Explain Big-oh notation. (3) Explain DFS. **(4)** Explain time and space complexity. (b) Answer in brief: (any one) 2 Explain malloc() function. **(1)** (2) Explain asymptomatic notation. (c) Answer in detail: (any one) 3 Explain dangling pointer problem. Explain breadth first search. (2) Write a note on any one: 5 (d) Explain minimal spanning tree. (2) Explain shortest path problem. 2 Write answers for following questions: 4 Linear search is faster than binary search. State true/false. Binary search requires sorted elements. State (2) True/false. Recursion is not used in quick sort. State True/ (3) false. Which design algorithm is used for quick sort? (4)

	(b)	Ans	wer in brief : (any one)	2
		(1)	Explain sequential search.	
		(2)	Explain insertion sort.	
	(c)	Ans	wer in detail : (any one)	3
		(1)	Explain bubble sort.	
		(2)	Explain index search.	
	(d)	Writ	te a note on any one :	5
		(1)	Explain binary search.	
		(2)	Explain selection sort.	
3	(a)	Write answers for following questions:		
		(1)	Explain primitive and non-primitive data type.	
		(2)	Explain linear and non-linear data structure.	
		(3)	What is priority queue ?	
		(4)	Explain stack operations.	
	(b)	Ans	wer in brief : (any one)	2
		(1)	Write UDF of simple queue : insert()	
		(2)	Write UDF of circle queue : insert())	
	(c)	Answer in detail : (any one)		
		(1)	Write UDF of stack : display ()	
		(2)	Write UDF of circle queue to delete : del ()	
	(d)	Writ	te a note on any one :	5
		(1)	Write UDF of stack : push () and pop ()	
		(2)	Write UDF of circle queue : display ()	
4	(a)	Writ	te answers for following questions :	4
		(1)	In a node of doubly linked list we can store value, address of next node and address of previous node. State True/False.	
		(2)	Which type of pointer used to point to the address of the next element in a linked list?	
		(3)	Last node contains NULL value as an address in a singly linked list. State True/False	
		(4)	In which linked list none of the nodes contains a NULL pointer ?	
DBW-003-2042			-	d

	(b)	Answer in brief: (any one)		
		(1) Write UDF of singly linked list : insert node at beginning.		
		(2) Write UDF of singly circular linked list: insert ()		
	(c)	Answer in detail : (any one)	3	
		(1) Write UDF of singly linked list; display ()		
		(2) Write UDF of doubly linked list : display ()		
(d)		Write a note on any one:		
		(1) Write UDF of singly linked list: insert ()		
		(2) Write UDF of doubly linked list : display ()		
5	(a)	Write answers for following questions:		
		(1) Explain leaf node.		
		(2) Explain sibling node.		
		(3) Explain height balanced tree.		
		(4) Explain root node.		
	(b)	Answer in brief: (any one)	2	
		(1) Explain post order tree traversal method.		
		(2) Explain searching process of binary search tree.		
	(c)	Answer in detail : (any one)		
		(1) Explain pre order tree traversal method.		
		(2) Explain deletion process of binary search tree.		
	(d)	Write a note on any one:		
		(1) Explain in order tree traversal method.		
		(2) Explain insertion process of binary search tree.		